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Abstract. We propose that intelligently combining models from the domains of 
Artificial Intelligence or Machine Learning with Physical and Expert models will 
yield a more “trustworthy” model than any one model from a single domain, 
given a complex and narrow enough problem. Based on mean-variance portfolio 
theory and bias-variance trade-off analysis, we prove combining models from 
various domains produces a model that has lower risk, increasing user trust. We 
call such combined models - physics enhanced artificial intelligence (PEAI), and 
suggest use cases for PEAI 
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1.  Introduction     

1.1  Motivation  

Recent theoretical developments in machine learning (ML), complemented 
by the astounding growth of computational power and the genesis of large data 
sets, have contributed to the rapid development of artificial intelligent (AI) 
systems. Even though the key findings required for a general AI system (strong 
AI) are considered a distant endeavor [1], AI systems designed to solve narrowly 
defined yet challenging enough problems (weak AI or narrow AI) are often 
comparable to or exceeding the performance of average humans [2, 3], and in 
many cases human experts, at these same tasks [4, 5, 6, 7]. These narrow AI 
solutions offer a great potential for industry to automate, improve, and surpass 
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unaided human productivity. In the rest of this paper, the term AI will refer to 
this narrow AI, unless stated otherwise. In spite of the great performance 
potential AI encompasses, user adoption has always been challenging. In many 
cases user trust becomes a bottleneck towards industry-wide adoption, especially 
in aerospace, safety, and defence, to name a few. New ways to enhance user trust 
in AI can directly affect user adoption at a large scale. In addition, if new ways to 
enhance user trust in AI can take advantage of existing solutions that were 
developed prior to AI solutions, it is likely to be more resource-friendly and even 
more attractive to industry. 

1.2  Background and Related Work: 

 In pursuit of industry-wide adoption of AI, new areas of research that focus 
on the trustworthiness of AI have emerged. Trust is a topic of rich content deeply 
rooted in many historical and philosophical discussions, and is often tied with the 
study of risk in philosophical research [8]. As we are primarily interested in user 
adoption of new technology, we are not approaching trust from a philosophical 
research viewpoint and focus on the aspect of user trust. 

To many ordinary users, the lack of trust in AI may have originated from the 
perception of the technology as a ‘black box’. This perception reflects several 
other profound issues between human users and AI, including lack of 
understanding of the scientific principles of how the AI is constructed, lack of 
understanding of the functionality and limitations of ML based systems, and lack 
of transparency in the AI design process. Even for experts, the lack of 
straightforward ways of explanation of AI action using domain knowledge can 
lead to a ‘black box’ perception. Recently there are considerable research efforts 
on developing AI systems that are easily interpreted by humans, resulting in an 
emerging research field of eXplainable Artificial Intelligence, or XAI [9, 10, 11, 
12]. XAI aims to bridge the gap of trust between AI system and its users by 
providing explanation of AI systems with the intentions to justify, control, and 
improve AI actions. Since explanations are subjective to the human observer, this 
area has also expanded to include psychology, philosophy, and cognitive science 
of people [13]. 

2. Physics Enhanced Artificial Intelligence (PEAI)  

2.1 Definitions and Assumptions 

In order to discuss the mathematical description of PEAI, we first discuss 
the basic concepts behind the idea of trust and risk in this context. In general, a 
user is more likely to trust and adopt a new technology - presented in the form of 
a model, when it is explainable and has good performance. We therefore assume 
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that user trust, for any given individual, is composed of three properties of the 
model:  

1. Interpretability or Explainablity (E)  

2. Performance Accuracy (A)  

3. Performance Consistency (C)  

In many practical applications where the task at hand is complex, AI models 
learned from data have lower interpretability compared with physics-based or 
expert-based models, and their consistency can be unknown or poor depending 
on how they are trained and the training data provided. However, they tend to be 
more accurate. Physics-based models are often quite interpretable and consistent, 
but are often not as accurate as the AI derived models. Expert models, while 
often accurate, may not be as consistent or explainable as physics-based models. 
We argue that combining models or knowledge from different domains of AI, 
physics, and expert for narrowly defined tasks, will yield a more trustworthy 
model than any one model or knowledge base they are composed from. 
Interpretability is subjective, and it is beyond the scope of our discussion of 
PEAI. By assuming that the interpretability of the models in question is constant 
based upon a given individual, we maximize user trust by maximizing the 
accuracy for a given model consistency. 

As an attempt to qualify the relationship between trust and a given model, we 
express user trust as   User Trust ∝ UT(a, c).       (1) 

 where a ∈ A, c ∈ C, and UT is a function of performance qualities that are 
assumed to belong to partially ordered domains. Further, we assume that  

sup{UT(a, c)} = UT(sup{A},sup{C}),        (2)  

inf{UT(a, c)} = UT(inf{A}, inf{C}),        (3)  

such that we can optimize UT. PEAI aims to develop a model to solve a narrow 
problem which consists of a set of rules and requirements that is described by 
task T . To avoid the discussion of trivial and unreasonable situations, we assume 
that T is sufficiently complex that the optimal solution is not known, and will 
require near infinite resources to identify. In order to solve T , a model, or a 
solution, f : X 7→ YT is constructed, where X consists of inputs from sensor 
measurements and YT its outputs. Let U 6= ∅ be the universal set of solutions. 
As models can be constructed using different methods, we define the following:  

A = {fA ∈ U : fA constructed using only AI based methods }    (4)  

P = {fP ∈ U : fP constructed using only physics based methods }    (5)  
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E = {fE ∈ U : fE constructed using only expert based methods }    (6)  

AP = {fAP ∈ U : fAP constructed using AI and physics based methods }   (7)  

AE = {fAE ∈ U : fAE constructed using AI and expert based methods }  (8) 

 PE = {fPE ∈ U : fPE constructed using physics and expert based methods }    (9)  

APE={fAPE ∈ U : fAPE constructed using AI, physics, and expert methods}(10)  

We also assume that there exist multiple competing models from each of the 
above defined sets. A PEAI system (or model), fP EAI , belongs to the set  

S = APE ∪ AP ∪ AE ∪ (A ∩ AP) ∪ (A ∩ AE) ∪ (A ∩ PE) ∪ (A ∩ P) ∪ (A ∩ E)
                     (11) 

    = APE ∪ AP ∪ AE ∪ (A ∩ PE) ∪ (A ∩ P) ∪ (A ∩ E).         (12) 

For a complex task T , it is highly unlikely that one arrives at exactly the same 
mathematical model when using different modeling methods, therefore the 
intersections between any two sets of model sets are expected to be empty, i.e,    
A ∩ P, A ∩ E, A ∩ PE = ∅. Under these situations, S reduces to 

 S ∗ = APE ∪ AP ∪ AE.                 (13)  

We will examine fP EAI ∈ S∗ for the remainder of this paper and discuss 
strategies for constructing fP EAI. For a complex problem, models are expensive 
to make, and no one model is perfect. We consider composing N finite number of 
models. Finally we assume that all models that are examined in U are constructed 
in good faith and aim to provide the best results possible given their application 
and method. 

2.2 Construction of PEAI  

There are two strategies to make a PEAI algorithm. The first is a composite 
model output approach - take models from the sets A, P, and E, and combine 
their outputs to form a new composite model in S ∗ . The composite model 
approach will be analyzed using an analogy to classical mean-variance portfolio 
theory. The second is a hybridization model approach - modify the form of 
constructing the model by applying an intelligent constraint using information 
from another domain, generating a model in S ∗ . We will analyze this hybridized 
model by using classical bias-variance trade-off analysis. We show that 
composed models using the above strategies yield a more consistent model for a 
desired accuracy.  
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2.2.1 Composite PEAI using Mean-Variance Portfolio Theory 

The 1990 Nobel prize was awarded to Harry Markowitz for his 1952 
‘Portfolio Selection’ essay[19]. His work laid the mathematical foundation of 
diversification by demonstrating that the combination of risky assets is less risky 
than any single asset. By treating the available models in U as risky assets, we 
can maximize user trust by minimizing the variance (risk) of the composite 
model. While this is conceptually a simple idea, it has profound impact on the 
understanding of ML ensembles and composite model techniques. 

Assume there exists a function m: YT 7→ R + that can be evaluated on each of 
the models that gives a meaningful representation of the model performance. 
Each model i ∈ {1, 2, ..., N}, has the output Yi . Without a loss of generality, we 
further assume larger value of m(Y ) indicate better performance. For the 
combined model, we have m(YC ) = Σwim(Yi),             (14) 

where wi is the relative weight given to model i with P i wi = 1, and wi ≥ 0, ∀i. 
Therefore C is composed of all N models. Using the distributive property of the 
expectation denoted by E[·], we solve for the first moment of YC ,  

µC = E [m(YC )] = ΣE[m(Yi)]wi = µ T w,            (15) 
where µk = E[m(Yk)], w = [w1 w2 ... wN ], and µ = [µ1 µ2 ... µN ]. We will 
assume that each element of µ is not equal to each-other, as the models are 
expected to give different expected values. The second moment of  

m(YC ), σ 2 C = Var [m(YC )] = wT Ωw,               (16) 

Finally by substituting the above results into equation 16,  

σ 2 C = w∗T Ωw∗ = w∗T Ω Ω −1 (λ11 + λ2µ)   

  = λ1 + λ2µC = (αµ2 C − 2βµC + γ)/ δ              (17) 

It is important to note a few properties about α, γ, and δ. Since Ω is positive 
definite, α > 0 and γ > 0, and by the Cauchy-Schwarz inequality δ > 0.  

Equation 17 allows us to solve for the minimal risk for a desired mean value. 
For each µi being unique, the models not being perfectly correlated, and N ≥ 3, 
the feasible region for portfolio theory can be shown to be a two-dimensional 
surface that is convex to the left, and is represented on the σ 2 C vs. µC plane, see 
Figure 1. In this figure, the class of optimal combined models lines on the thick 
black line between points P1 and P2. A sub-optimal model found by combining 
model outputs from various domains, as shown by P3, lies within the region with 
a dotted line boundary, and an unfeasible model lies outside this boundary, as 
shown by point P4. 
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  Figure 1                    Figure 2 

Fig. 1: Example of a feasible region of composite models from portfolio analysis 

Fig 2: Model complexity vs. Total Error. The optimal models are likely to belong 
to the class of PEAI models. 

The optimal combined model available exists on the curve between points P1 and 
P2 and is marked by the thicker line. 

An example of the feasible point P3 could be constructed and interpreted 
under the following conditions: If one were to make a model using a linear 
combination of the outputs of all N models, and assign each model the weights of 
1N, then one would construct the equivalent of an ensemble of models using 
majority vote to make a decision. In practice this has shown to increase the 
accuracy and reduce the variance of the model [20]; however, here we show that 
there exists a set of weights for each of these models that would minimize the 
risk of the prediction. Therefore, this ensemble, majority vote model is likely to 
be a sub-optimal solution for a given performance. 

In the case where models come from different domains, it is more likely that 
the models are going to have different _i, be less correlated with each other, and 
have different properties of their predictions. For example, the models in A are 
more likely to be more accurate than those in P, but have a higher variance. 
Therefore when these models are combined the composite model is able to obtain 
a more optimal performance than any one given model. 
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2.2.2 Hybridization PEAI using Bias-Variance Trade-Off Analysis: 

Hybridized PEAI models can be shown to have lower risk and enhanced 
user trust. First we derive the expressions of bias and variance in a model. Here 
we will assume that the model can be represented as a function of the inputs plus 
some error: y = f(x) + E:                 (18) 

where E is noise with zero mean and variance _2, such that E[€] = 0 and E[€2] = 
Var[y] = _2. Also let ^ f(x) be a deterministic approximation the function f(x), F 
= f(x) and ^ F = ^ f(x). 

Therefore we can express the mean squared error as a function of the Bias[ ^ F], 
_2, and Var[ ^ F]: 

E [(Y – F^)2] = = Bias[ ^ F]2 + δ2 + Var[ ^ F]            (19) 

Normally, a physics models tend to have higher bias, but low variance. On 
the other hand, AI models tend to have a high variance and low bias. By placing 
physics constraints on the AI model during learning or during run-time, one place 
a bias on the new hybrid model, limiting the output space. This will cause the 
model to have a larger bias, and if done correctly will dramatically reduce the 
variance of the hybrid model. This concept can be shown graphically by model 
complexity vs. error diagram in Figure 2. By intelligently introducing physics 
based constraints to AI models or vice versa, we can arrive at models that have 
lower total error. 

3.  Implications of PEAI 

Human learning builds on human observations and empirical evidence of the 
surrounding world, and this accumulated and learned knowledge is passed on, 
resulting in a systems design or model that is physics-based, as shown by the 
architecture in Figure 3. Similarly, data driven AI approaches use ML to arrive at 
a design or model based on the collected data. The combined model allows 
solutions of AI to be constrained by physical solution and expert knowledge, 
which enhances performance and trust. In addition, user trust in PEAI can be 
further enhanced by having a human supervisor in the loop, where the supervisor 
monitors the AI and provides feedback to the system that can improve its 

performance. 
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Fig. 3: Physics enhanced AI and its relationships with machine learning and 
human learning 

It is interesting to point out that many have already worked on the class of 
PEAI systems, though the direct increase in user trust was not the motivation. For 
example, AI system with physical constrains is shown best by the work Physics 
informed deep learning [21, 22], where differential equation constraints that can 
represent a physical model is combined with a neural network to form a PEAI. In 
the field of predictive turbulence modeling, Physics-informed ML framework has 
been proposed [23], where the functional form of the Reynolds stress discrepancy 
in Reynolds-averaged Navier-Stokes (RANS) is learned directly based on 
available data. In the area of real-time vision-based event monitoring at industrial 
sites, Physical constraints are added to AI models in order to improve 
performance and enhance user trust. Being able to quickly identify and design AI 
solutions that have potential for wide-range industrial adoption is challenging. 
The AI solutions that are more likely to receive wider adoption are ones that can 
earn trust from users, and deliver an improved productivity at the same time. By 
explicitly pointing out the connection between enhanced user trust and combining 
models from different domains, it is suggested that one should always seek to 
combine AI models with prior models, if available. 
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4.  Conclusions 

Physics enhanced AI (PEAI) is a class of model that is formed by 
intelligently combining models from the domains of artificial intelligence or 
machine learning with physical and expert models. It was shown that by doing 
so, model risk is reduced, resulting in a more “trustworthy” model than any one 
model from a single domain. PEAI is shown as a solution to improve user 
adoption of an AI which solves a complex yet narrow enough problems. 
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